Correlation Coefficient Calculator (2024)

Use this correlation calculator to estimate the correlation coefficient of any two sets of data. The tool can compute the Pearson correlation coefficient r, the Spearman rank correlation coefficient (rs), the Kendall rank correlation coefficient (τ), and the Pearson's weighted r for any two random variables. It also computes p-values, z scores, and confidence intervals, as well as the least-squares regression equation.

Quick navigation:

  1. What is a correlation coefficient?
  2. Using the correlation coefficient calculator
  3. Pearson's vs. Spearman's vs Kendall's coefficient
  4. Correlation coefficient equations
  • Pearson's correlation coefficient formula
  • Spearman rank correlation formula
  • Kendall's tau formula
  • Weighted correlation coefficient
  • Practical applications of correlation
  • What is a correlation coefficient?

    The phenomenon measured by a correlation coefficient is that of statistical correlation. We say two random variables or bivariate data are correlated if there is some form of quantifiable association between them, some kind of statistical relationship. A trivial example would be to plot the change in average daily temperature and the consumption of ice cream, or the intensity of cloud coverage and rainfall precipitation in a given region. We will observe that the two variables tend to change together, to an extent, suggesting some dependence between them. The dependence might be due to direct causality, indirect causality, or it might be entirely spurious.

    A correlation coefficient calculated for two variables, X and Y, is a measure of the extent to which the dependent variable (Y) tends to change with changes in the independent variable (X). It quantifies both the strength and the direction of the relationship. A positive correlation coefficient reflects a straight relationship between the variables while a negative one reflects an inverse one (when X is higher, Y is lower, and vice versa). A coefficient of zero signifies complete lack of a statistical association (orthogonality), while a coefficient of one (or minus one) suggests a perfect correlation (X and Y change in unison).

    We can therefore distinguish between three basic types of correlation:

    • No correlation - the coefficient is exactly 0.
    • Positive correlation - the coefficient is between 0 and 1
    • Negative correlation - the coefficient is between -1 and 0

    An example of a negative correlation is shown below, with the accompanying Pearson's correlation coefficient (R).

    Correlation Coefficient Calculator (1)

    There are different types of coefficients quantifying different types of correlations in terms of how the variables relate to each other - linear / non-linear, functional / non-functional, etc. (see Pearson's vs. Spearman's vs Kendall's coefficient below). As any other statistic, a coefficient of correlation is just an estimate and has inherent uncertainty. A Z score, p-value, and confidence intervals can be used to quantify the uncertainty of any correlation coefficient. Our correlation coefficient calculator supports the three most popular coefficients and uncertainty estimates for all of them.

    Using the correlation coefficient calculator

    To use this correlation coefficient calculator first enter the data you want to analyze: one column per variable, X and Y. Optionally, you can enter pair weights in a third column, in which case they will be applied to the values resulting in a weighted correlation coefficient (only applies to Pearson's coefficient). Columns are separated by spaces, tabs, or commas, so copy-pasting from Excel or another spreadsheet should work just fine. All columns should have an equal number of values in them.

    Then you need to select the type of coefficient to compute. Coefficients supported in the calculator are:

    • Pearson correlation coefficient (r)
    • Spearman correlation coefficient (rs)
    • Kendall correlation coefficient (τ)

    The appropriate coefficient will depend on the type of your data and the type of correspondence that is thought to underlie the supposed dependence. This step is crucial in drawing correct conclusions about the presence or absence of correlation, as well as its strength. If you need guidance on this, the comparison of the three coefficients of correlation that this calculator supports can be found below and should be of great assistance.

    Finally, you can change the default 95% confidence level for the computed confidence intervals. The p-values and confidence intervals for the Pearson coefficient and the Spearman coefficient are calculated using the Fisher transformation and hold under an independence of observations assumption. The same assumption applies to estimates related to the Kendall rank correlation coefficient.

    The coefficient correlation calculator will produce as output the selected coefficient and the sample size. It will also output the z score, p-value, and confidence intervals (two-sided bounds and one-sided bounds) for all but the weighted Pearson's coefficient. The output also includes the least-squares regression equation (regression line) of the form y = m · x + b where m is the slope and b is the y-intercept of the regression line.

    Pearson's vs. Spearman's vs Kendall's coefficient

    The choice of the correct correlation coefficient is essential in making correct inferences. Violating the assumptions behind a statistical model results in meaningless (or misleading) numbers. Choosing the wrong coefficient can also mean that you will fail to capture a true correlation, e.g. if you use Pearon's coefficient while the relationship is non-linear. As Arndt et al. put it: "The wrong choice can obscure significant findings due to low power or lead to spurious associations because of an inflated type I error rate." [5].

    To help you with this choice when using this calculator, below is a table with essential characteristics and assumptions for the three most used coefficients, as well as guidance on when to use which.

    Characteristics of three correlation coefficients
    Attribute / TestPearson's rSpearman's rKendall's tau
    Supported data typesInterval, RatioOrdinal, Interval, RatioOrdinal, Interval, Ratio
    hom*ogeneity assumptionshom*oscedasticityNoneNone
    Dependence assumptionsLinear dependenceMonotonic dependenceMonotonic dependence
    Susceptibility to outliers (robustness)SensitiveRobustRobust
    Inference assumptions
    (H0 for p-values, CI coverage)
    The sample pairs are independent and identically distributed (IID) and follow a bivariate normal distributionThe sample pairs are independent and identically distributed (IID)The sample pairs are independent and identically distributed (IID)
    Inference if coefficient is 0:X and Y are linearly uncorrelated random variables*X and Y are monotonically uncorrelated random variables*X and Y are monotonically uncorrelated random variables*
    Inference if coefficient is 1 or -1X and Y are perfectly linearly dependent random variablesX and Y are perfectly monotonically dependent random variablesX and Y are perfectly monotonically dependent random variables

    * Note that lack of correlation does not necessitate independence whereas the presence of correlation signifies dependence.

    Since it is often mistakenly believed that Pearson's r requires that both X and Y are normally distributed, it warrants repeating that this is not so. As noted by Spearman [2] "...the method of "product moments" is valid, whether or not the distribution follows the normal law of frequency, so long as the 'regression' is linear". So neither coefficient relies on distributional assumptions for its validity.

    Normality is an assumption only for the calculation of related statistics and if those are of interest you can use our normality test calculator to check for departures. Keep in mind that high p-values from the normality tests might be just due to having a small sample size and tests not being sensitive enough.

    As you can see, making the right choice is not a trivial matter as it requires knowing your data and understanding the potential dependence. Make sure you understand the implications of selecting one correlation method over the other.

    Correlation coefficient equations

    The correlation coefficient calculator supports several different coefficients. The equations used to compute each of them are explained here in some detail.

    Pearson's correlation coefficient formula

    The formula for computing Pearson's ρ (population product-moment correlation coefficient, rho) is as follows [1]:

    Correlation Coefficient Calculator (2)

    where cov(X,Y) is the covariance of the variables X and Y and σX (sigma X) is the population standard deviation of X, and σY of Y. Mathematically, it is defined as the quality of least squares fitting to the original data. It is applicable when we know the population mean and standard deviations, which is rarely the case in practice. Hence most of the time the applicable formula is the equation for the Pearson sample correlation coefficient r.

    The formula for Pearson's r is [1]:

    Correlation Coefficient Calculator (3)

    which is essentially the same as for Pearson's ρ, but instead of population means and standard deviations we have sample means and standard deviations. The numerator represents the sample covariance cov(x,y) while the denominator is the product of the sample standard deviations σx and σy. The large Σ operator is the familiar summation operator. This equation makes it easy to see why correlation can be defined as a standardized form of the covariance.

    Spearman rank correlation formula

    The formula for computing Spearman's rs (Spearman's rank correlation coefficient) is as follows [2]:

    Correlation Coefficient Calculator (4)

    where rgX and rgY stand for the rank transformed values of X and Y. Therefore, Spearman's correlation coefficient rs is simply the Pearson correlation coefficient computed using the rank values instead of the raw values of the two variables, which is why it can uncover non-linear, as well as linear relationships between X and Y, as long as Y is a monotone function of X. In other words, the Spearman rs assesses how well an arbitrary monotonic function can describe a relationship between two variables, without imposing any assumptions on the frequency distribution of the variables [4].

    Kendall's tau formula

    The formula for computing the Kendall rank correlation coefficient τ (tau), often referred to as Kendall's τ coefficient or just Kendall's τ, is as follows [3]:

    Correlation Coefficient Calculator (5)

    Where n is the number of pairs and sgn() is the standard sign function. The coefficient computed with the above equation is known as (τA) and only works when there are no ties in the data. The calculator uses a slightly modified equation (τB) which accounts correctly for ties within the datasets [6].

    Kendall's tau quantifies the similarity of the orderings of ranked transformed data and can be interpreted as the probability that as X increases Y will increase rescaled from -1 to 1. This coefficient was not as popular in the near past mainly due to its prohibitive computational complexity, but the ease of interpretation and its other desirable qualities - high power with good robustness, coupled with an intuitive interpretation as the probability that any pair of observations will have the same ordering on both variables rescaled from -1 to 1 [5] - make it a prime candidate for many research questions.

    Weighted correlation coefficient

    The formula for computing the weighted Pearson correlation coefficient is as follows:

    Correlation Coefficient Calculator (6)

    The equation consists of the weighted covariance of x and y divided by the product of the weighted standard deviations of x and y. The weighted covariance of x and y given a vector of weights w can be computed as:

    Correlation Coefficient Calculator (7)

    where mx and my are the weighted means of x and y computed in the usual manner.

    Using the same notation, the formula for the weighted standard deviation is:

    Correlation Coefficient Calculator (8)

    It is computed equivalently for y.

    Practical applications of correlation

    Correlation and correlation coefficients have broad applications in multiple scientific and applied disciplines like biology, genetics, epidemiology, psychology (psychometrics), psychiatry, finance, stock trading, marketing, management, and countless others. In a simple linear regression fitted by least-squares the coefficient of determination is simply Pearson's r squared (r2).

    A prominent case we can examine as a practice problem is the association of smoking with various diseases and shortened lifespan. When observing population wide health trends, researchers noticed a potential link between smoking and various diseases, many cancers included, as well as all-cause mortality. What does one such correlation look like? Let's say we take a representative sample from men 50 years and older who smoke, and measure both the number of cigarettes they consume per day and the age at which they died. The number of cigarettes is our independent variable X, whereas longevity in years is our dependent variable Y.

    Example data for examining correlations
    Metric / Case
    Cigarettes/day
    Longevity
    010203040506070809101112131415
    25461726523243529413862319
    605386777877657258916684737875

    Putting the numbers in the calculator and selecting to use Kendall's correlation coefficient we can quantify the relationship between smoking and longevity. In this case the coefficient is -0.541 meaning that there exists a moderate inverse association between X and Y. The higher the number of cigarettes, the lower the longevity - a dose-dependent relationship. The resulting p-value of 0.0022 shows that observing such a negative correlation would be highly unlikely if there were none or positive correlation instead.

    References

    1 Pearson K. (1896) "Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia", Philosophical Transactions A 373:253–318

    2 Spearman C. (1904) "The proof and measurement of association between two things", American Journal of Psychology 15(1):72–101; DOI:10.2307/1412159

    3 Kendall M. (1938) "A New Measure of Rank Correlation", Biometrika 30(1–2):81–89; DOI:10.1093/biomet/30.1-2.81

    4 Hauke J., Kossowski T. (2011) "Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data", Quaestiones Geographicae 30(2):87-93; DOI: 10.2478/v10117-011-0021-1

    5 Arndt et al (1999) "Correlating and Predicting Psychiatric Symptom Ratings - Spearman's r Versus Kendall's Tau Correlation", Journal of Psychiatric Research, 33(2):97-104; DOI: 10.1016/s0022-3956(98)90046-2

    6 Knight W. (1966) "A Computer Method for Calculating Kendall's Tau with Ungrouped Data", Journal of the American Statistical Association 61(314):436–439; DOI:10.2307/2282833

    Our statistical calculators have been featured in scientific papers and articles published in high-profile science journals by:

    Correlation Coefficient Calculator (2024)

    FAQs

    How to calculate coefficient correlation? ›

    The correlation coefficient formula is: r = n ∑ X Y − ∑ X ∑ Y ( n ∑ X 2 − ( ∑ X ) 2 ) ⋅ ( n ∑ Y 2 − ( ∑ Y ) 2 ) . The terms in that formula are: n = the number of data points, i.e., (x, y) pairs, in the data set. ∑ X Y = the sum of the product of the x-value and y-value for each point in the data set.

    What is the R value for correlation? ›

    r is always a number between -1 and 1. r > 0 indicates a positive association. r < 0 indicates a negative association. Values of r near 0 indicate a very weak linear relationship.

    How do you find the coefficient coefficient? ›

    To find the coefficient, we can cover the variable and look for numbers or alphabets present with it. For example, to find the coefficient of m in the term 10mn, we can hide m, and then we are left with 10n which is the required coefficient.

    How do you manually calculate correlation in R? ›

    R calculates the correlation coefficient with the function cor() . In its basic form, cor() needs two inputs: the x-coordinates and the y-coordinates. The result of cor(bm$height, bm$upper_arm_length) is NA because at least one of the two input vectors contains missing values.

    What is the simple correlation coefficient? ›

    A correlation coefficient is a number between -1 and 1 that tells you the strength and direction of a relationship between variables. In other words, it reflects how similar the measurements of two or more variables are across a dataset.

    What is a good correlation coefficient? ›

    If we wish to label the strength of the association, for absolute values of r, 0-0.19 is regarded as very weak, 0.2-0.39 as weak, 0.40-0.59 as moderate, 0.6-0.79 as strong and 0.8-1 as very strong correlation, but these are rather arbitrary limits, and the context of the results should be considered.

    Is correlation coefficient r or r2? ›

    Coefficient of correlation is “R” value which is given in the summary table in the Regression output. R square is also called coefficient of determination. Multiply R times R to get the R square value. In other words Coefficient of Determination is the square of Coefficeint of Correlation.

    How to get r in statistics? ›

    Use the formula (zy)i = (yi – ȳ) / s y and calculate a standardized value for each yi. Add the products from the last step together. Divide the sum from the previous step by n – 1, where n is the total number of points in our set of paired data. The result of all of this is the correlation coefficient r.

    What is the formula for coefficient of determination in correlation? ›

    The coefficient of determination can also be found with the following formula: R2 = MSS/TSS = (TSS − RSS)/TSS, where MSS is the model sum of squares (also known as ESS, or explained sum of squares), which is the sum of the squares of the prediction from the linear regression minus the mean for that variable; TSS is the ...

    Top Articles
    SPARKING תג Piccolo & Son Goku
    SPARKING Piccolo at Son Goku tag
    Booknet.com Contract Marriage 2
    Shs Games 1V1 Lol
    Health Benefits of Guava
    Teenbeautyfitness
    Nikki Catsouras Head Cut In Half
    Cnnfn.com Markets
    Where does insurance expense go in accounting?
    Cbs Trade Value Chart Fantasy Football
    Mail.zsthost Change Password
    Letter F Logos - 178+ Best Letter F Logo Ideas. Free Letter F Logo Maker. | 99designs
    Brett Cooper Wikifeet
    China’s UberEats - Meituan Dianping, Abandons Bike Sharing And Ride Hailing - Digital Crew
    Sulfur - Element information, properties and uses
    Graphic Look Inside Jeffrey Dahmer
    Poe Str Stacking
    Dragger Games For The Brain
    Gran Turismo Showtimes Near Marcus Renaissance Cinema
    Seeking Arrangements Boston
    Sec Baseball Tournament Score
    Riversweeps Admin Login
    Redfin Skagit County
    Living Shard Calamity
    3569 Vineyard Ave NE, Grand Rapids, MI 49525 - MLS 24048144 - Coldwell Banker
    January 8 Jesus Calling
    Isablove
    Planned re-opening of Interchange welcomed - but questions still remain
    Lawrence Ks Police Scanner
    Pch Sunken Treasures
    Fox And Friends Mega Morning Deals July 2022
    Hypixel Skyblock Dyes
    Western Gold Gateway
    Grapes And Hops Festival Jamestown Ny
    Austin Automotive Buda
    State Legislatures Icivics Answer Key
    Zasilacz Dell G3 15 3579
    Anya Banerjee Feet
    8 Ball Pool Unblocked Cool Math Games
    Review: T-Mobile's Unlimited 4G voor Thuis | Consumentenbond
    Live Delta Flight Status - FlightAware
    062203010
    Pain Out Maxx Kratom
    Advance Auto.parts Near Me
    Pgecom
    Conan Exiles Colored Crystal
    Theater X Orange Heights Florida
    Mike De Beer Twitter
    Gelato 47 Allbud
    Equinox Great Neck Class Schedule
    Latest Posts
    Article information

    Author: Nathanael Baumbach

    Last Updated:

    Views: 5375

    Rating: 4.4 / 5 (75 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Nathanael Baumbach

    Birthday: 1998-12-02

    Address: Apt. 829 751 Glover View, West Orlando, IN 22436

    Phone: +901025288581

    Job: Internal IT Coordinator

    Hobby: Gunsmithing, Motor sports, Flying, Skiing, Hooping, Lego building, Ice skating

    Introduction: My name is Nathanael Baumbach, I am a fantastic, nice, victorious, brave, healthy, cute, glorious person who loves writing and wants to share my knowledge and understanding with you.